STEP 1: Developing a modular system
A grid with a distance of 10 (for usage) and 3 meters (for circulation) was created. It contains 5 different modules, three for living-usage and two for working
areas. For best possible daylight supply, a broad circulation and optimpized every modul
position in the grid was chosen.
STEP 2: Analysing the circulation with UNA
After arranging the modules, the circulation between them was created. Therefor the UNA-tool for Rhino (Urban Network Analyse) was used. This tool analyses a threedimensional network (in
this case: the grid) concerning the distance between different points ( in this case: the modules,
entries, positions for staircases, etc.)
STEP 3: Evaluating the results of Step 2
After multiple simulations with UNA, a circulation system based on the information, gained in step 2, was created.
The system is now as space-saving as possible, in order to have the highest possible daylight supply and short ways between the destinations.
STEP 4: Creating an urban gardening concept
A main part of the concept is intense gardening on the ground and on the modules in form of green
roofing. The grid itself should be vegetated by climbing plants. The residents can grow their own food
here and in summer, it helps cooling down the
modules.
STEP 5: Developing a regenerative energy supply
The top layer of the grid is filled with a translucent PV system. Combined with a battery storage
device and a thermal heat pump in the river on the property,the energy needed to heat and cool the
modules can be generated. A smart grid is responsible for the distribution of the photovoltaic electricity.
STEP 6: Developing a solar heat absorber
All modules are constructed in solid wood and
insulated with woodbased materials. To increase the insulating effect, a heat absorber based on an E-Ink-display (e.g. Kindle) was designed.The technology would allow to have a white, not absorbend façade in summer and a black, absorbend
one in winter.
The absorber would only need energy, when it changes its color.
STEP 7: Developing a double-skin façade
When sun is shining in winter on the absorber, it will heat up. In order to save this heat, the modules are
wraped by a second façade made of PTFE-foil.The air inbetween of these two façade skins will
heat up and help saving energy for heating.
As part of the Thesis, a life cycle assessment for BnB-certification was done and a facility management developed.